Evolutionary analysis of vision genes identifies potential drivers of visual differences between giraffe and okapi
نویسندگان
چکیده
BACKGROUND The capacity of visually oriented species to perceive and respond to visual signal is integral to their evolutionary success. Giraffes are closely related to okapi, but the two species have broad range of phenotypic differences including their visual capacities. Vision studies rank giraffe's visual acuity higher than all other artiodactyls despite sharing similar vision ecological determinants with many of them. The extent to which the giraffe's unique visual capacity and its difference with okapi is reflected by changes in their vision genes is not understood. METHODS The recent availability of giraffe and okapi genomes provided opportunity to identify giraffe and okapi vision genes. Multiple strategies were employed to identify thirty-six candidate mammalian vision genes in giraffe and okapi genomes. Quantification of selection pressure was performed by a combination of branch-site tests of positive selection and clade models of selection divergence through comparing giraffe and okapi vision genes and orthologous sequences from other mammals. RESULTS Signatures of selection were identified in key genes that could potentially underlie giraffe and okapi visual adaptations. Importantly, some genes that contribute to optical transparency of the eye and those that are critical in light signaling pathway were found to show signatures of adaptive evolution or selection divergence. Comparison between giraffe and other ruminants identifies significant selection divergence in CRYAA and OPN1LW. Significant selection divergence was identified in SAG while positive selection was detected in LUM when okapi is compared with ruminants and other mammals. Sequence analysis of OPN1LW showed that at least one of the sites known to affect spectral sensitivity of the red pigment is uniquely divergent between giraffe and other ruminants. DISCUSSION By taking a systemic approach to gene function in vision, the results provide the first molecular clues associated with giraffe and okapi vision adaptations. At least some of the genes that exhibit signature of selection may reflect adaptive response to differences in giraffe and okapi habitat. We hypothesize that requirement for long distance vision associated with predation and communication with conspecifics likely played an important role in the adaptive pressure on giraffe vision genes.
منابع مشابه
Giraffe genome sequence reveals clues to its unique morphology and physiology
The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were ...
متن کاملThe cervical anatomy of Samotherium, an intermediate-necked giraffid
Giraffidae are represented by many extinct species. The only two extant taxa possess diametrically contrasting cervical morphology, as the okapi is short-necked and the giraffe is exceptionally long-necked. Samotherium major, known from the Late Miocene of Samos in Greece and other Eurasian localities, is a key extinct giraffid; it possesses cervical vertebrae that are intermediate in the evolu...
متن کاملThe Cervical Osteology of Okapia johnstoni and Giraffa camelopardalis
Giraffidae is the only family of ruminants that is represented by two extant species; Okapia johnstoni and Giraffa camelopardalis. Of these taxa, O. johnstoni represents a typical short-necked ungulate, and G. camelopardalis exemplifies the most extreme cervical elongation seen in any ruminant. We utilize these two species to provide a comprehensive anatomic description of the cervical vertebra...
متن کاملAn evaluation of Tehran intercity bus drivers’ vision compared with the standards for Iran and Europe
Background: With an ever-increasing number of vehicles on the road, it is inevitable that drivers will need to call upon an increasing use of sensory and motor skills in order to negotiate safely through traffic. Vision is one of the major senses in human beings, and it is definitely necessary for safe driving. Approximately 95% of the sensory input to the brain required for driving comes from ...
متن کاملDistinct and Diverse: Range-Wide Phylogeography Reveals Ancient Lineages and High Genetic Variation in the Endangered Okapi (Okapia johnstoni)
The okapi is an endangered, evolutionarily distinctive even-toed ungulate classified within the giraffidae family that is endemic to the Democratic Republic of Congo. The okapi is currently under major anthropogenic threat, yet to date nothing is known about its genetic structure and evolutionary history, information important for conservation management given the species' current plight. The d...
متن کامل